Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29626, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660269

RESUMO

Saccharina latissima is a brown seaweed used as a food ingredient. The aim of this work was to study possible differences between S. latissima chemical composition, color, mode of cultivation, harvesting period and site and its environmental conditions. Water temperature, salinity, radiation, and fluorescence were monitored in each harvesting site. Chemical composition of S. latissima varied greatly with period and site, with a high content of carbohydrates and ash. Crude protein content varied from 3.7 % to 12.8 %, with a higher concentration observed in wild samples harvested in Bas-St. Laurent (11.1-12.8 %). Cultivated seaweed also presented a high crude protein (12.2 %) and ash (52 % against 27 % in wild samples) concentrations, but crude fiber and carbohydrates concentrations were lower, reaching up to 2.7 and 1.9-fold, respectively, than those in wild seaweeds. S. latissima presented a more intense yellow color in June. A trend of darker and more green-colored seaweeds when cultivated in the end of summer was confirmed. Our results suggest that variations in chemical components and chromaticity of this species are probably affected by complex interactions of environmental conditions.

2.
Mar Drugs ; 21(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37504923

RESUMO

The macroalga Palmaria palmata could be a sustainable and nutritional food resource. However, its composition may vary according to its environment and to processing methods used. To investigate these variations, wild P. palmata from Quebec were harvested in October 2019 and June 2020, and dried (40 °C, ≃5 h) or stored as frozen controls (-80 °C). The chemical (lipids, proteins, ash, carbohydrates, fibers), mineral (I, K, Na, Ca, Mg, Fe), potential bioactive compound (carotenoids, polyphenols, ß-carotene, α-tocopherol) compositions, and the in vitro antioxidant activity and angiotensin-converting enzyme (ACE) inhibition potential of water-soluble extracts were determined. The results suggested a more favorable macroalgae composition in June with a higher content of most nutrients, minerals, and bioactive compounds. October specimens were richer only in carbohydrates and carotenoids. No significant differences in antioxidant or anti-ACE inhibitory activities were found between the two harvest months. The drying process did not significantly impact the chemical and mineral compositions, resulting in only small variations. However, drying had negative impacts on polyphenols and anti-ACE activities in June, and on carotenoids in October. In addition, a concentration effect was observed for carotenoids, ß-carotene and α-tocopherol in June. To provide macroalgae of the highest nutritional quality, the drying process for June specimens should be selected.


Assuntos
Rodófitas , Alga Marinha , alfa-Tocoferol/farmacologia , beta Caroteno , Rodófitas/química , Antioxidantes/farmacologia , Antioxidantes/química , Alga Marinha/química , Carotenoides/farmacologia , Carboidratos , Polifenóis/farmacologia
3.
Foods ; 12(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107531

RESUMO

Macroalgae are a new food source in the Western world. The purpose of this study was to evaluate the impact of harvest months and food processing on cultivated Saccharina latissima (S. latissima) from Quebec. Seaweeds were harvested in May and June 2019 and processed by blanching, steaming, and drying with a frozen control condition. The chemical (lipids, proteins, ash, carbohydrates, fibers) and mineral (I, K, Na, Ca, Mg, Fe) compositions, the potential bioactive compounds (alginates, fucoidans, laminarans, carotenoids, polyphenols) and in vitro antioxidant potential were investigated. The results showed that May specimens were significantly the richest in proteins, ash, I, Fe, and carotenoids, while June macroalgae contained more carbohydrates. The antioxidant potential of water-soluble extracts (Oxygen Radical Absorbance Capacity [ORAC] analysis-625 µg/mL) showed the highest potential in June samples. Interactions between harvested months and processing were demonstrated. The drying process applied in May specimens appeared to preserve more S. latissima quality, whereas blanching and steaming resulted in a leaching of minerals. Losses of carotenoids and polyphenols were observed with heating treatments. Water-soluble extracts of dried May samples showed the highest antioxidant potential (ORAC analysis) compared to other methods. Thus, the drying process used to treat S. latissima harvested in May seems to be the best that should be selected.

4.
Mar Drugs ; 21(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36827143

RESUMO

Despite the increased interest in macroalgae protein and fibers, little information is available on their bioaccessibility. The application of an in vitro gastrointestinal digestion model to study the degree of disintegration and release of proteins with expressed bioactivities from wild and cultivated Palmaria palmata and Saccharina latissima was proposed in this study. Macroalgae from the Gulf of St Lawrence, Canada, were submitted to digestive transit times of 2 (oral), 60 (gastric) and 120 (duodenal) minutes. Among wild samples, P. palmata had a higher percentage of disintegration, protein release and degree of hydrolysis than S. latissima. While the least digested sample, wild S. latissima, was the sample with the highest antioxidant activity (210 µmol TE g-1), the most digested sample, cultivated P. palmata, presented the highest ability to inhibit the angiotensin-converting enzyme (ACE), reaching 32.6 ± 1.2% at 3 mg mL-1. ACE inhibitory activity increased from 1 to 3 mg mL-1, but not at 5 mg mL-1. Wild samples from both species showed an ACE inhibition around 27.5%. Data suggested that the disintegration of the samples was influenced by their soluble and insoluble fiber contents. Further information on the bioaccessibility and bioactivity of these macroalgae should consider the characterization of digestion products other than protein, as well as the effects of previous product processing.


Assuntos
Phaeophyceae , Rodófitas , Alga Marinha , Antioxidantes/farmacologia , Hidrólise
5.
Sci Rep ; 8(1): 1112, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348650

RESUMO

Glacial vicariance is regarded as one of the most prevalent drivers of phylogeographic structure and speciation among high-latitude organisms, but direct links between ice advances and range fragmentation have been more difficult to establish in marine than in terrestrial systems. Here we investigate the evolution of largely disjunct (and potentially reproductively isolated) phylogeographic lineages within the amphi-boreal kelp Saccharina latissima s. l. Using molecular data (COI, microsatellites) we confirm that S. latissima comprises also the NE Pacific S. cichorioides complex and is composed of divergent lineages with limited range overlap and genetic admixture. Only a few genetic hybrids were detected throughout a Canadian Arctic/NW Greenland contact zone. The degree of genetic differentiation and sympatric isolation of phylogroups suggest that S. latissima s. l. represents a complex of incipient species. Phylogroup distributions compared with paleo-environmental reconstructions of the cryosphere further suggest that diversification within S. latissima results from chronic glacial isolation in disjunct persistence areas intercalated with ephemeral interglacial poleward expansions and admixture at high-latitude (Arctic) contact zones. This study thus supports a role for glaciations not just in redistributing pre-existing marine lineages but also as a speciation pump across multi-glacial cycles for marine organisms otherwise exhibiting cosmopolite amphi-boreal distributions.


Assuntos
Biodiversidade , Camada de Gelo , Kelp/classificação , Kelp/genética , Filogenia , Filogeografia , DNA Mitocondrial , Ecossistema , Complexo IV da Cadeia de Transporte de Elétrons/genética , Meio Ambiente , Variação Genética , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...